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Observation operator for Doppler radar radial winds in HIRLAM
3D-Var
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Abstract. Observation operator for the Doppler radar radial
winds has been developed for the HIRLAM 3D-Var. The first
version of the observation operator involved a linear interpo-
lation of the modelu- andv- wind components to the ob-
servation location and a projection of the interpolated wind
components towards the radar on the slanted direction of the
radar beam. In reality the radar beam broadens with increas-
ing range from the radar. It is thus tempting to use a gaussian
weighting of the horizontal model wind profile at the obser-
vation location rather than a linear interpolation from the two
nearest model levels. The effect of the radar beam bending
is studied by calculating the local refraction index gradient
from the model temperature, humidity and pressure profiles.

1 Introduction

The scope of this paper is the assimilation of Doppler
radar radial winds into numerical weather prediction model.
Wind observations are particularly important in forecast-
ing quickly developing mesoscale systems, because in these
scales geostrophic adjustment is weak and the mass field ad-
justs to the wind field (Rinne 2000). Doppler radar wind ob-
servations constitute a potential source of wind information.

The first version of the observation operator for radar
radial winds and a 10-day assimilation experiment with
HIRLAM (HIgh Resolution Limited Area Model) 3D-Var
were validated and reported in the previous ERAD meeting
in Bologna Italy, 2000 (Lindskog et al. 2000). In this paper,
the fit of the model counterpart with observations is studied
in more detail and the observation operator is further devel-
oped to be more faithful to the nature of radar wind mea-
surements. Section 2 describes the basics of the observation
operator. Development and testing is considered in Sect. 3
and a brief summary is given in Sect. 4.
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2 Observation operator

Three dimensional variational data assimilation (3D-Var) is
based on the minimization of the cost function

J = Jb + Jo =
1
2
(x− xb)T B−1(x− xb)

+
1
2
(Hx− y)T R−1(Hx− y), (1)

whereJb measures the distance of the model state vectorx
to the background model state vectorxb andJo to the ob-
servation vectory respectively (Gustafsson et al. 2001). Ob-
servation operatorH produces the model counterpart of the
observed quantity.

The observation operator for radial winds (Lindskog et
al. 2000) involves first linear interpolation of model data to
the observation location. Then a projection of the horizon-
tal model wind towards the radar at the observation point is
calculated with

vh = u sin θ + v cos θ, (2)

whereu andv are the model horizontal wind components in
x- and y- direction andθ is the azimuth angle of the radar
beam. Thevh is finally projected on the slanted direction of
the radar beam

vr = vh cos (φ + α)

where

α = arctan
(

d cos φ

d sin φ + 4
3r + h

)
(3)

andφ is the elevation angle of the radar beam. The formula
for α takes approximately into account the curvature of the
Earth. In termα, d is the measurement range,r is the radius
of the earth andh is the height of the radar above the mean
sea level.

There are three major assumptions in this formulation of
the observation operator. First, the radar beam broadening
is not taken into account. Second, the bending of the radar
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beam is not properly taken into account. Third, it is assumed
that there is no mean velocity towards the radar due to precip-
itation. The last assumption is valid only for measurements
with low elevation angles.

3 Further observation operator development and test-
ing

3.1 Gaussian weight function

The radar beam broadens with increasing range and the wind
observation represents the larger measurement volume the
longer is the measurement range. The shape of the radar
beam main lobe can be approximated with a gaussian func-
tion (Probert-Jones 1962). The elementary solution to model
the broadening of the radar beam in the observation operator
is thus to use a gaussian weight function

w =
1
2π

exp
(
− (z − z0)2

κ

)
(4)

in vertical instead of linear interpolation when defining the
modelu- andv- components to the observation height. In
(4) z is the model level height andz0 the observation height.
Theκ-term defines the width of the filter response function.

The gaussian weight function is nonzero from the earth’s
surface to the top of the atmosphere. The wind information
which the radar is unable to measure should not be used when
defining the model counterpart. Radars are unable to see be-
low certain height, i.e. below the radar horizon. The ob-
scuring effect of the radar horizon is taken into account by
assuming radar horizon of 0◦ below which the model infor-
mation is not used.

The observation operator assumes a homogeneous field of
scatterers between the radar horizon and the top of the model
domain. The empirical upper integration limit is set to 1.5
times the beamwidth (Jarmo Koistinen, personal communi-
cation). This is based on the fact that the radar reflectivity
usually decreases rapidly above that height. Also, above this
height the gaussian weight is already so small that the infor-
mation does not have a notable effect to the calculated wind
component.

Figures 1a, 1b and 1c show examples of the gaussian
weight function at different measurement ranges. When the
measurement range is short the vertical extent of the weight
function is narrow, and it broadens with the increasing range.

If the vertical wind profile is linear, the model counter-
part is the same when calculated by the linear interpolation
or by the gaussian weight function. The effect of using the
gaussian weight function as opposed to the linear interpo-
lation is the largest when the wind profile is nonlinear and
there is a local maximum or minimum near the observation
height. This is illustrated by Fig. 1d. In linear interpola-
tion the model counterpart would be calculated from the two
nearest model levels, and the interpolated wind component
would also be near the actual local maximum/minimum of
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Fig. 1. The shape of the gaussian weight function (solid line) in ver-
tical with measurement ranges(a) 15 km (κ = 2.7× 105 m), b) 45
km (κ = 1.1× 106 m) and(c) 85 km (κ = 5.2× 106 m), observa-
tion height marked with *.(d) Model wind profile for v-component
(solid line). Wind at observation height marked with * when calcu-
lated with linear interpolation and with x when calculated applying
gaussian weight function in vertical.

the model wind profile. The gaussian weight function in-
tegrates over several model levels and therefore the model
counterpart deviates from the actual model wind profile.

A 14 day (1–14 June 1999) experiment has been per-
formed to study the difference between the radial superob-
servations and the model background, which is a 6 hour fore-
cast. Superobservations are spatial averages of raw measure-
ments. They represent better the horizontal model resolu-
tion than the raw observations. In order to evaluate the im-
pact of the gaussian weight function the experiment has been
performed both for the standard observation operator (lin-
ear interpolation) and for the improved observation operator
(gaussian weight function). The observations are from the
SMHI (Swedish Meteorological and Hydrological Institute)
radar network, which has a large unambiguous velocity in-
terval (±48 m/s).

Figure 2 displays the mean and RMS difference between
observations and background as a function of height for the
standard observation operator (solid line). Above 750 m
height the mean difference increases implying that the model
counterpart is always stronger than the observed wind. The
height dependence of the mean difference means also range
dependence, because the higher is the measurement height
the longer is the measurement range. Dashed line of Figure
2 displays the mean and RMS difference between observa-
tions and background for the improved observation opera-
tor. Mean difference is slightly smaller for almost all heights
in this case. The RMS difference profiles are almost identi-
cal for both runs. The overall impact of the gaussian weight
function is positive.
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Fig. 2. Mean (a) and RMS(b) difference between observations
and background as a function of height with solid line when linear
interpolation is used in the observation operator and with dashed
line when the gaussian weight function is used in the observation
operator.

3.2 Bending of the radar beam

Using the gaussian weight function decreases the mean dif-
ference between observations and background, but the im-
provement is quite small. Another source of positive mean
difference could be that the radar beam path is assumed to
be too high, because the bending of the radar beam in the
atmosphere is not properly taken into account.

The termα in the observation operator takes approxi-
mately into account the curvature of the earth. Doviak and
Zrnic (1993) show that the radar ray path can be considered
a straight line when an equivalent earth’s radius

re =
r

1 + r dn
dh

(5)

is used. In (5)r is the earth’s radius anddn
dh is the gradient of

the refraction index. Typically the gradient of the refraction
index is -40×10−6 km−1. This value leads to an effective
radius of approximatelyre = 4

3r which is used in (3). When
the temperature increases with altitude, i.e. an inversion is
present, downward bending of the radar rays is stronger than
in normal conditions (ICAO atmosphere) and the gradient
of the refraction index is smaller. Thissuper refractionis
typical in the lower parts of the atmosphere. If the gradient
of the refraction index is larger than -40×10−6 km−1, the
radar beam is not bent downward as strongly as usual. In
subrefraction conditions the effective earth radius is larger
than 4

3r.
Figure 3 illustrates radar beam height with increasing

range in normal conditionsdn
dh = −40×10−6 km−1, when

super refraction is presentdn
dh = −90×10−6 km−1 (case

a) and when subrefraction is presentdn
dh =10×10−6 km−1

(case b). Broadening of the radar beam is also illustrated as-

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

a

b

range [km]

he
ig

ht
 [k

m
]

Fig. 3. Height of the radar beam shown as a function of measure-
ment range in normal conditions (i.e.4

3
r-law) (solid line), when the

gradient of the refraction index isdn
dh

= −90 × 10−6 (dotted line
a) and when the gradient of the refraction index isdn

dh
= 10× 10−6

(dotted line b). Broadening of the radar beam is shown with dashed
lines, when the beamwidth is 1◦ and the elevation angle 0.5◦.

suming a beamwidth of 1◦. For example at a range of 100
km the width of the radar beam main lobe is approximately 2
km. If the gradient of the refraction index is decreased from
normal conditions to -90×10−6 km−1 the height of the radar
beam differs from the43r-law by about 300 m.

In order to evaluate the impact of accounting the bending
of the radar beam, the 14 day experiment has been repeated
with the further modified observation operator. The local re-
fraction index

n =
(

77.6
T

(p + 4810
e

T
)
)
× 10−6 + 1, e =

qp

0.622
(6)

is calculated from the model (T , q, p)-profile for model lev-
els assuming horizontal homogeneity between the observa-
tion location and the radar location. In (6)T is temperature,
p is pressure,e water vapour pressure andq specific humid-
ity. The gradient of the refraction index is calculated as a
pressure weighted average from the 10 lowest model levels.
The effective radius of the earth is calculated by (5) and sub-
stituted into (3). The effect of calculating the local gradient
of the refraction index is small on mean and RMS differ-
ence between observations and background, at largest of the
order±10−4 (no figure). This can be understood by study-
ing the equation (3). If the gradient of the refraction index
dn
dh changes from -40×10−6 km−1 for example to -90×10−6

km−1 and the measurement range varies between 0 and 150
km, the change incos(φ + α)-term varies between 0 and
10−4. This is exactly the order of magnitude of the change
in calculatedvr.
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4 Summary and conclusions

Observation operator for the Doppler radar radial winds is
tested and further developed for HIRLAM 3D-Var. The dif-
ference between the observations and the model counterpart
is studied. There is a positive height (range) dependent mean
difference between observations and background of up to 1.0
m/s in the data, model counterpart being stronger than the
observed wind. This mean difference can be reduced by up
to 0.2 m/s, if a gaussian weight function is used when cal-
culating the modelu- andv- components to the observation
height. Calculating the local gradient of the refraction in-
dex from model (T , q, p)-profile has no notable effect on
mean and RMS difference. It seems to be accurate enough to
use the4

3r-law when accounting for the bending of the radar
beam.
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